Категории
Самые читаемые
RUSBOOK.SU » Документальные книги » Публицистика » Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Читать онлайн Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 31 32 33 34 35 36 37 38 39 ... 48
Перейти на страницу:

Петръ Рамусъ, знаменитый французскій математикъ и философъ XVI столѣтія, даетъ въ главѣ о дробяхъ, какъ и въ другихъ отдѣлахъ математики, много свѣжихъ и новыхъ мыслей. Онъ особенно настаиваетъ на томъ, что ученикамъ надо объяснять правила, а не только принуждать выучивать ихъ наизусть, и что правила надо выводить, а не только примѣнять готовыя къ примѣрамъ. Однако, самъ Рамусъ, вслѣдствіе той туманности, которую придавали ариѳметикѣ его предшественники, не всегда одинаково ясно и удачно ведетъ свое изложеніе, такъ что въ случаѣ умноженія дробей мы находимі, у него такой запутанный выводъ: «дано умножить ¾ на ⅔, это значитъ найти ¾ части отъ дроби ⅔; разсуждаемъ по тройному правилу—1 относится къ 3, какъ 2 къ 6, и 1 относится къ 4, какъ 3 къ 12, слѣдовательно, отвѣтъ будетъ : 6/12 это и есть произведеніе ⅔ на ¾».

Русскіе математики XVII и XVIII в. слѣдовали въ главѣ объ умноженіи западно-европейскiмъ образцамъ. Они разсматривали 3 случая: a) умноженіе дроби на цѣлое, b) умноженіе дроби на дробь и c) умноженіе смѣшанныхъ чиселъ. Въ концѣ, въ такъ наз. «строкѣ генераль» давалось общее правило перемноженія дробей. Неизмѣняемость произведенія при перестановкѣ производителей объяснялась въ такихъ выраженіяхъ:

«вѣдаи доли изъ доли умноженіе, какъ ⅓ изъ ¼ умножаи придетъ 1/12 такожъ ¼ изъ ⅓ то-жъ 1/12».

 Знакъ при умноженіи дробей всегда употреблялся такой: одна горизонтальная черта проводилась отъ числителя къ числителю, а другая отъ знаменателя къ знаменателю, и это служило хорошимъ знакомъ дѣйствія, такъ какъ этимъ обозначался порядокъ вычисленія.

Замѣчательно мѣсто у Магницкаго, въ которомъ онъ трактуетъ объ умноженіи простыхъ дробей. Здѣсь явственно вылилась вся нетребовательность по отношенію ко всякимъ выводамъ и объясненіямъ. Достаточно сообщить правило, а кромѣ него что же еще надо? такъ, навѣрное, думаетъ Магницкій, и мы не можемъ отказать себѣ въ томъ, чтобы не привести отрывка изъ его ариѳметики. Стр. 54

«Мултипликаціо или умноженіе въ доляхъ. Что въ семъ предѣленіи достоитъ вѣдати. Впервыхъ подобаетъ вѣдати яко во умноженіи нѣсть потреба да сравняеши доли къ единакому знаменателю: но яковы доли дадутся, таковы и умножати числители чрезъ чиелители, и знаменатели чрезъ знаменатели, якоже ⅜ чрезъ ¼. 3 чрезъ 1 будетъ 3, а 8 чрезъ 4, будетъ 32, и еже отъ числителей произыдетъ напиши надъ чертою, а отъ знаменателей произведеное напиши подъ чертою и будетъ 3/32».

Итакъ, въ ариѳметикѣ дается только правило, безъ вывода, зато послѣ правила идетъ цѣлый рядъ примѣровъ, всего 60 номеровъ, съ отвѣтами, и предлагается заняться продѣлываніемъ этихъ примѣровъ, чтобы, такъ сказать, набить руку въ этомъ правилѣ.

Преемники Магницкаго, т.-е. составители русскихъ учебниковъ XVIII и даже ХІХ в., не оказались счастливѣе его въ этомъ случаѣ. Они тоже или не даютъ никакихъ объясненій умноженія дробей, или даютъ объясненія спутанныя и трудныя. Такъ, въ ариѳметикѣ Адодурова (1740 г.) про умноженіе дробей объясняется на 29 страницахъ, при чемъ объясненіе дано очень растянутое, многословное и малоубѣдительное. У Румовскаго (1760 г.) передъ дробями расположены пропорціи, и умноженіе дробей выводится изъ общаго свойства пропорцій, именно, что произведеніе крайнихъ членовъ равно произведенію среднихъ членовъ. И сами пропорціи являются для учениковъ темнымъ мѣстомъ, а ужъ про выводъ изъ нихъ и говорить нечего, особенно когда онѣ идутъ на буквахъ, какъ это видимъ у Румовскаго. Порядочное изложеніе встрѣчаемъ мы у Загорскаго (1806 г.), но уже у Павла Цвѣткова (1834 г.) опять тянется старая пѣсня. «Какъ множится дробь на дробь?» спрашиваетъ онъ, и отвѣчаетъ:

«При умноженіи дробей на дроби надлежитъ множить числітелей на числителей, а знаменателей на знаменателей».

Этимъ заканчивается § 34, и авторъ уже болѣе не желаетъ возвращаться къ подобному скучному вопросу, къ которому, вдобавокъ, никакъ еще не придумать подходящаго объясненія. И это въ то время, когда Цвѣтковъ для болѣе легкаго вопроса, для умноженія дроби на цѣлое, находитъ нужнымъ и возможнымъ дать толковое объясненіе.

Да, умноженіе на дробь и въ старину, и еще теперь является однимъ изъ самыхъ больныхъ мѣстъ начальной ариѳметики.

Дѣленіе. Дѣленіе дробей шло все время правильнымъ путемъ, безъ скачковъ и отклоненій въ сторону. Еще древніе египтяне вполнѣ логично заключали, что дѣленіе обратно умноженію, и что поэтому его можно привести къ умноженію. По своей привычкѣ къ основнымъ дробямъ, т.-е. съ числителемъ, равнымъ единицѣ, они и дѣленіе разсматривали съ точки зрѣнія этихъ дробей. Примѣръ: 2 : 1⅓ ¼. Здѣсь египтяне ставили вопросъ: на какое чиоло надо помножить выраженіе 1⅓ ¼, иначе сказать 1 + ⅓ + ¼, чтобы получить въ произведеніи 2? Для этого помножаемъ количество 1⅓ ¼ на ⅔ ⅓ 1/6 1/12, и получаемъ 285/144; при этомъ отдѣльно помножается множимое число на ⅔, на ⅓, на 1/6 и на 1/12, съ такимъ расчетомъ, чтобы каждое слѣдующее произведеніе было вдвое меньше предыдущаго. Такъ какъ 285/144 отличается отъ даннаго числа 2 на 3/144, т.-е. на 1/72 1/144, то остается рѣшить вопросъ: на какое число надо умножить 1 ⅓ ¼, или 288/144, чтобы получить сперва 1/144? Очевидно, на 1/228. Чтобы получить 1/72, надо умножить на 1/114 Такимъ образомъ, послѣ довольно запутаннаго вычисленія получается итогъ: ⅔ ⅓ 1/6 1/12 1/114 1/288, который и считался у египтянъ вполнѣ нормальнымъ, какъ составленный изъ основныхъ дробей (дробь ⅔ у нихъ тоже признавалась основной, это единственная изъ дробей съ числителемъ 2, у нея даже былъ свой спеціальный знакъ).

Римскій способъ дѣленія дробей напоминаетъ собой римскій же способъ дѣленія цѣлыхъ чиселъ. Вотъ примѣръ Бернелинуса (въ XIII ст. по Р. X.). Раздѣлить 28 на 1¾. Дѣлится 28 не на 1¾, а на 2, т.-е. дѣлитель дополняется до цѣлаго числа, 28 : 2=14; теперь надо составить лишекъ или сдачу, которую слѣдуетъ возвратить дѣлимому; такъ какъ на каждую часть взято лишняго по ¼, то на всѣ 14 частей пришлось З½, дѣлимъ З½ на 2, будетъ въ частномъ 1, въ остаткѣ 1½; сдачи возвратится ¼, всего составится въ дѣлимомъ 1¾; дѣлимъ это количество на 1¾ и получимъ въ частномъ 1; такимъ образомъ, весь искомый результатъ будетъ 14 + 1 + 1 = 16.

Неморарій, математикъ среднихъ вѣковъ, современникъ Бернелинуса, пользуется для дѣленія аналогіей съ умноженіемъ и даетъ слѣдующій искусственный пріемъ. Задано раздѣлить 2/3 на 4/5. Тогда числитель и знаменатель первой дроби увеличивается въ 4 × 5 разъ и затѣмъ примѣняется правило: числителя раздѣлить на числителя, а знаменателя на знаменателя, подобно тому, какъ въ умноженіи дробей множатся числитель на числителя и знаменатель на знаменателя.

Получается формула:

Леонардо Фибонначи, итальянскій математикъ XIII вѣка, совѣтовалъ приводить дроби къ одному знаменателю и потомъ уже дѣлить, пользуясь аналогіей съ именованными числами, такъ какъ тамъ, обыкновенно, мѣры раздробляются въ одинаковое наименованіе, и затѣмъ полученныя числа дѣлятся. Примѣръ у Фибонначи слѣдующій:

Въ XVI ст. по Р. X. на сцену вышло новое правило дѣленія дробей: надо дѣлимое помножить на обращеннаго дѣлителя. Примѣръ: ¾ : ⅔. Для рѣшенія его множимъ ¾ на 3/2, получимъ 9/8, это и будетъ вѣрнымъ отвѣтомъ. Въ объясненіе этого правила, равно какъ и всѣхъ другихъ, авторы учебниковъ входить не любили. Они только ограничивались тѣмъ, что приводили самое правило и потомъ нѣсколько примѣровъ съ рѣшеніемъ. Ученики же запоминали правило и практиковались въ примѣненіи его къ вычисленіямъ.

1 ... 31 32 33 34 35 36 37 38 39 ... 48
Перейти на страницу:
На этой странице вы можете бесплатно скачать Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит